Sunday 20 August 2017

2 งวด เฉลี่ยเคลื่อนที่ สูตร


ค่าเฉลี่ยเคลื่อนที่: อะไรคือตัวชี้วัดทางเทคนิคที่เป็นที่นิยมมากที่สุดค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อวัดทิศทางของแนวโน้มในปัจจุบัน ค่าเฉลี่ยเคลื่อนที่ทุกประเภท (เขียนโดยทั่วไปในบทแนะนำนี้เป็น MA) คือผลทางคณิตศาสตร์ที่คำนวณโดยเฉลี่ยจำนวนจุดข้อมูลที่ผ่านมา เมื่อพิจารณาแล้วค่าเฉลี่ยที่เกิดขึ้นจะถูกวางแผนลงในแผนภูมิเพื่อให้ผู้ค้าสามารถดูข้อมูลที่ราบรื่นแทนที่จะมุ่งเน้นไปที่ความผันผวนของราคาในแต่ละวันที่มีอยู่ในตลาดการเงินทั้งหมด รูปแบบที่ง่ายที่สุดของค่าเฉลี่ยเคลื่อนที่โดยทั่วไปหมายถึงค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย (SMA) โดยคำนวณค่าเฉลี่ยเลขคณิตของชุดค่าที่กำหนด ตัวอย่างเช่นในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันคุณจะเพิ่มราคาปิดจาก 10 วันที่ผ่านมาและหารผลตาม 10 ในรูปที่ 1 ผลรวมของราคาในช่วง 10 วันที่ผ่านมา (110) คือ หารด้วยจำนวนวัน (10) เพื่อให้ได้ค่าเฉลี่ย 10 วัน หากผู้ค้าต้องการเห็นค่าเฉลี่ย 50 วันแทนจะต้องมีการคำนวณประเภทเดียวกัน แต่จะรวมราคาในช่วง 50 วันที่ผ่านมา ค่าเฉลี่ยที่เกิดขึ้นด้านล่าง (11) คำนึงถึงจุดข้อมูล 10 จุดที่ผ่านมาเพื่อให้ผู้ค้าทราบว่าสินทรัพย์มีราคาเทียบกับ 10 วันที่ผ่านมาอย่างไร บางทีคุณอาจสงสัยว่าทำไมผู้ค้าทางเทคนิคเรียกเครื่องมือนี้ว่าเป็นค่าเฉลี่ยเคลื่อนที่และไม่ใช่แค่ค่าเฉลี่ยปกติ คำตอบก็คือเมื่อค่าใหม่มีพร้อมใช้งานจุดข้อมูลที่เก่าที่สุดต้องถูกลดลงจากชุดข้อมูลและจุดข้อมูลใหม่ ๆ ต้องมาเพื่อแทนที่ ดังนั้นชุดข้อมูลจึงมีการย้ายข้อมูลบัญชีใหม่ ๆ ไปเรื่อย ๆ วิธีการคำนวณนี้ช่วยให้แน่ใจได้ว่าจะมีการบันทึกข้อมูลปัจจุบันเท่านั้น ในรูปที่ 2 เมื่อมีการเพิ่มค่าใหม่ของชุดที่ 5 ช่องสีแดง (แทนจุดข้อมูล 10 จุดที่ผ่านมา) จะเลื่อนไปทางขวาและค่าสุดท้ายของ 15 จะถูกลดลงจากการคำนวณ เนื่องจากค่าที่ค่อนข้างเล็ก 5 จะแทนที่ค่าที่สูงถึง 15 คุณจึงคาดว่าจะเห็นค่าเฉลี่ยของการลดลงของชุดข้อมูลซึ่งในกรณีนี้มีค่าตั้งแต่ 11 ถึง 10 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่เมื่อค่าของ MA ได้รับการคำนวณพวกเขาจะวางแผนลงบนแผนภูมิและเชื่อมต่อแล้วเพื่อสร้างเส้นค่าเฉลี่ยเคลื่อนที่ เส้นโค้งเหล่านี้มีอยู่ทั่วไปในแผนภูมิของผู้ค้าด้านเทคนิค แต่วิธีการใช้งานเหล่านี้อาจแตกต่างกันอย่างมาก (ในภายหลัง) ดังที่เห็นในรูปที่ 3 คุณสามารถเพิ่มค่าเฉลี่ยเคลื่อนที่ได้มากกว่าหนึ่งรายการในแผนภูมิโดยการปรับจำนวนช่วงเวลาที่ใช้ในการคำนวณ เส้นโค้งเหล่านี้ดูเหมือนจะเสียสมาธิหรือทำให้เกิดความสับสนในตอนแรก แต่คุณจะคุ้นเคยกับมันเมื่อเวลาผ่านไป เส้นสีแดงเป็นเพียงราคาเฉลี่ยในช่วง 50 วันที่ผ่านมาในขณะที่เส้นสีน้ำเงินเป็นราคาเฉลี่ยในช่วง 100 วันที่ผ่านมา ตอนนี้คุณเข้าใจว่าค่าเฉลี่ยเคลื่อนที่คืออะไรและแนะนำให้ใช้ค่าเฉลี่ยเคลื่อนที่ที่ต่างกันและดูว่าค่าเฉลี่ยเคลื่อนที่แตกต่างจากค่าเฉลี่ยเคลื่อนที่ที่กล่าวถึงก่อนหน้านี้เท่าไร ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเป็นที่นิยมอย่างมากของผู้ค้า แต่เป็นตัวบ่งชี้ทางเทคนิคทั้งหมดก็มีนักวิจารณ์ หลายคนอ้างว่าประโยชน์ของ SMA มีข้อ จำกัด เนื่องจากแต่ละจุดในชุดข้อมูลมีน้ำหนักเหมือนกันโดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในลำดับ นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากกว่าข้อมูลที่เก่ากว่าและควรมีอิทธิพลมากขึ้นต่อผลลัพธ์สุดท้าย ในการตอบสนองต่อคำวิจารณ์นี้ผู้ค้าเริ่มให้น้ำหนักกับข้อมูลล่าสุดซึ่งนำไปสู่การประดิษฐ์เครื่องคิดเลขใหม่ ๆ ประเภทต่างๆซึ่งเป็นที่นิยมมากที่สุดซึ่งเป็นค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) (สำหรับการอ่านเพิ่มเติมโปรดดูข้อมูลเบื้องต้นเกี่ยวกับค่าเฉลี่ยถ่วงน้ำหนักและความแตกต่างระหว่าง SMA กับ EMA) ค่าเฉลี่ยเคลื่อนที่แบบเสวนาค่าเฉลี่ยเคลื่อนที่แบบเสวนาคือค่าเฉลี่ยเคลื่อนที่ที่ให้น้ำหนักมากกว่าราคาล่าสุดในความพยายามที่จะทำให้การตอบสนองดีขึ้น ข้อมูลใหม่ ๆ การเรียนรู้สมการที่ค่อนข้างซับซ้อนสำหรับการคำนวณ EMA อาจไม่จำเป็นสำหรับผู้ค้าจำนวนมากเนื่องจากเกือบทุกชุดรูปแบบแผนภูมิทำคำนวณสำหรับคุณ อย่างไรก็ตามสำหรับคุณ geeks คณิตศาสตร์ออกมีที่นี่สมการ EMA: เมื่อใช้สูตรในการคำนวณจุดแรกของ EMA คุณอาจสังเกตเห็นว่าไม่มีค่าที่จะใช้เป็น EMA ก่อนหน้านี้ ปัญหาเล็ก ๆ นี้สามารถแก้ไขได้โดยเริ่มต้นการคำนวณด้วยค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและต่อเนื่องโดยใช้สูตรด้านบนจากที่นั่น เราได้จัดเตรียมสเปรดชีตตัวอย่างไว้ในตัวอย่างชีวิตจริงในการคำนวณทั้งค่าเฉลี่ยเคลื่อนที่แบบเรียบและค่าเฉลี่ยเคลื่อนที่แบบเสวนา ความแตกต่างระหว่าง EMA และ SMA ตอนนี้คุณเข้าใจดีว่า SMA และ EMA คำนวณอย่างไรให้ลองดูว่าค่าเฉลี่ยเหล่านี้แตกต่างกันอย่างไร เมื่อพิจารณาการคำนวณ EMA คุณจะสังเกตเห็นว่าจุดข้อมูลสำคัญ ๆ อยู่ในจุดข้อมูลล่าสุดทำให้เป็นประเภทของค่าเฉลี่ยถ่วงน้ำหนัก ในรูปที่ 5 ตัวเลขของช่วงเวลาที่ใช้ในแต่ละค่าเฉลี่ยเหมือนกัน (15) แต่ EMA จะตอบสนองต่อการเปลี่ยนแปลงราคาได้เร็วขึ้น สังเกตว่า EMA มีมูลค่าสูงขึ้นเมื่อราคาเพิ่มขึ้นและลดลงเร็วกว่า SMA เมื่อราคาลดลง การตอบสนองนี้เป็นเหตุผลหลักที่ทำให้ผู้ค้าจำนวนมากต้องการใช้ EMA มากกว่า SMA อะไรที่แตกต่างกันระหว่างวันหมายถึงค่าเฉลี่ยเคลื่อนที่เป็นตัวบ่งชี้ที่สามารถปรับแต่งได้โดยสิ้นเชิงซึ่งหมายความว่าผู้ใช้สามารถเลือกกรอบเวลาที่ต้องการได้ทุกเมื่อสร้างค่าเฉลี่ย ช่วงเวลาที่ใช้บ่อยที่สุดในการเคลื่อนที่โดยเฉลี่ยอยู่ที่ 15, 20, 30, 50, 100 และ 200 วัน ช่วงเวลาสั้น ๆ ที่ใช้ในการสร้างค่าเฉลี่ยความละเอียดอ่อนมากขึ้นคือการเปลี่ยนแปลงราคา ยิ่งช่วงเวลาที่ยาวนานขึ้นเท่าไรก็ยิ่งอ่อนไหวหรือเรียบเนียนขึ้นเท่านั้นโดยเฉลี่ยแล้ว ไม่มีกรอบเวลาที่เหมาะสมที่จะใช้เมื่อตั้งค่าค่าเฉลี่ยเคลื่อนที่ของคุณ วิธีที่ดีที่สุดในการพิจารณาว่ารูปแบบใดที่ดีที่สุดสำหรับคุณคือการทดสอบกับช่วงเวลาต่างๆจนกว่าคุณจะพบกับช่วงเวลาที่เหมาะสมกับกลยุทธ์ของคุณ ค่าเฉลี่ยเคลื่อนที่: วิธีการใช้ค่า ThemMoving Average ตัวอย่างนี้สอนวิธีการคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้เกิดความผิดปกติ (ยอดเขาและหุบเขา) เพื่อรับรู้แนวโน้มได้ง่ายขึ้น 1. ขั้นแรกให้ดูที่ซีรี่ส์เวลาของเรา 2. ในแท็บข้อมูลคลิกการวิเคราะห์ข้อมูล หมายเหตุ: ไม่สามารถหาปุ่ม Data Analysis คลิกที่นี่เพื่อโหลด Add-in Analysis ToolPak 3. เลือก Moving Average และคลิก OK 4. คลิกที่กล่อง Input Range และเลือกช่วง B2: M2 5. คลิกที่ช่อง Interval และพิมพ์ 6. 6. คลิกที่ Output Range box และเลือก cell B3 8. วาดกราฟของค่าเหล่านี้ คำอธิบาย: เนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและจุดข้อมูลปัจจุบัน เป็นผลให้ยอดเขาและหุบเขาจะเรียบออก กราฟแสดงแนวโน้มที่เพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกได้เนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้เพียงพอ 9. ทำซ้ำขั้นตอนที่ 2 ถึง 8 สำหรับช่วงที่ 2 และช่วงที่ 4 ข้อสรุป: ช่วงที่ใหญ่กว่ายอดเนินและหุบเขาจะยิ่งเรียบขึ้น ระยะห่างที่สั้นลงค่าเฉลี่ยของค่าเฉลี่ยที่เคลื่อนที่ได้ใกล้เคียงกับจุดข้อมูลจริงมากขึ้นการคาดการณ์การคาดการณ์โดยเฉลี่ยของปีก่อน ตามที่คุณอาจคาดเดาเรากำลังมองหาวิธีการดั้งเดิมบางอย่างที่คาดการณ์ไว้ แต่หวังว่าสิ่งเหล่านี้เป็นการนำเสนอที่คุ้มค่าสำหรับปัญหาด้านคอมพิวเตอร์บางส่วนที่เกี่ยวข้องกับการใช้การคาดการณ์ในสเปรดชีต ในหลอดเลือดดำนี้เราจะดำเนินการต่อโดยการเริ่มต้นตั้งแต่เริ่มต้นและเริ่มทำงานกับการคาดการณ์ Moving Average การย้ายการคาดการณ์เฉลี่ย ทุกคนคุ้นเคยกับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยไม่คำนึงถึงว่าพวกเขาเชื่อหรือไม่ว่า นักศึกษาทุกคนทำแบบฝึกหัดตลอดเวลา ลองนึกถึงคะแนนการทดสอบของคุณในหลักสูตรที่คุณจะมีการทดสอบสี่ครั้งระหว่างภาคการศึกษา ให้สมมติว่าคุณมี 85 คนในการทดสอบครั้งแรกของคุณ คุณคาดหวังอะไรสำหรับคะแนนการทดสอบที่สองของคุณคุณคิดอย่างไรว่าครูของคุณจะคาดการณ์คะแนนทดสอบต่อไปคุณคิดอย่างไรว่าเพื่อนของคุณอาจคาดเดาคะแนนการทดสอบครั้งต่อไปคุณคิดว่าพ่อแม่ของคุณคาดการณ์คะแนนการทดสอบต่อไปได้ไม่ว่า การทำร้ายทั้งหมดที่คุณอาจทำกับเพื่อนและผู้ปกครองของคุณพวกเขาและครูของคุณมีแนวโน้มที่จะคาดหวังว่าคุณจะได้รับบางสิ่งบางอย่างในพื้นที่ของ 85 ที่คุณเพิ่งได้ ดีตอนนี้ให้สมมติว่าแม้จะมีการโปรโมตด้วยตัวคุณเองกับเพื่อน ๆ ของคุณคุณสามารถประเมินตัวเองและคิดว่าคุณสามารถเรียนได้น้อยกว่าสำหรับการทดสอบที่สองและเพื่อให้คุณได้รับ 73. ตอนนี้สิ่งที่ทุกอย่างที่เกี่ยวข้องและไม่แยแสไป คาดว่าคุณจะได้รับการทดสอบครั้งที่สามมีสองแนวทางที่น่าจะเป็นไปได้สำหรับพวกเขาในการพัฒนาประมาณการโดยไม่คำนึงว่าพวกเขาจะแบ่งปันกับคุณหรือไม่ พวกเขาอาจพูดกับตัวเองว่าผู้ชายคนนี้มักจะเป่าควันเกี่ยวกับความฉลาดของเขา เขาจะได้รับอีก 73 ถ้าเขาโชคดี บางทีพ่อแม่จะพยายามสนับสนุนและพูด quotWell เพื่อให้ห่างไกลได้รับ 85 และ 73 ดังนั้นคุณควรคิดเกี่ยวกับการเกี่ยวกับ (85 73) 2 79 ฉันไม่รู้ว่าบางทีถ้าคุณไม่ปาร์ตี้ และเหวี่ยงพังพอนไปทั่วสถานที่และถ้าคุณเริ่มต้นทำมากขึ้นการศึกษาที่คุณจะได้รับคะแนนสูงขึ้นทั้งสองประมาณการเหล่านี้เป็นจริงการคาดการณ์เฉลี่ยย้าย อันดับแรกใช้คะแนนล่าสุดของคุณเพื่อคาดการณ์ประสิทธิภาพในอนาคตของคุณเท่านั้น นี่เรียกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยใช้ข้อมูลระยะเวลาหนึ่ง ข้อที่สองเป็นค่าพยากรณ์เฉลี่ยเคลื่อนที่ แต่ใช้ข้อมูลสองช่วง ให้สมมติว่าคนเหล่านี้ทั้งหมด busting ในจิตใจที่ดีของคุณมีการแบ่งประเภทของคุณออกและคุณตัดสินใจที่จะทำดีในการทดสอบที่สามด้วยเหตุผลของคุณเองและจะนำคะแนนที่สูงขึ้นในด้านหน้าของ quotalliesquot ของคุณ คุณใช้การทดสอบและคะแนนของคุณเป็นจริง 89 ทุกคนรวมทั้งตัวคุณเองเป็นที่ประทับใจ ดังนั้นตอนนี้คุณมีการทดสอบครั้งสุดท้ายของภาคการศึกษาที่กำลังจะมาถึงและตามปกติแล้วคุณรู้สึกว่าจำเป็นที่จะต้องกระตุ้นให้ทุกคนคาดการณ์เกี่ยวกับวิธีที่คุณจะทำในการทดสอบครั้งล่าสุด ดีหวังว่าคุณจะเห็นรูปแบบ ตอนนี้หวังว่าคุณจะเห็นรูปแบบนี้ คุณเชื่อว่าเป็นนกหวีดที่ถูกต้องที่สุดในขณะที่เราทำงาน ตอนนี้เรากลับไปที่ บริษัท ทำความสะอาดแห่งใหม่ของเราซึ่งเริ่มต้นโดยพี่สาวที่แยกกันอยู่ของคุณชื่อ Whistle While We Work คุณมีข้อมูลการขายในอดีตที่แสดงโดยส่วนต่อไปนี้จากสเปรดชีต ก่อนอื่นเราจะนำเสนอข้อมูลสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 3 ช่วง รายการสำหรับเซลล์ C6 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C7 ถึง C11 แจ้งให้ทราบว่าค่าเฉลี่ยย้ายผ่านข้อมูลทางประวัติศาสตร์ล่าสุด แต่ใช้เวลาสามช่วงล่าสุดสำหรับการคาดการณ์แต่ละครั้ง นอกจากนี้คุณควรสังเกตด้วยว่าเราไม่จำเป็นต้องทำการคาดการณ์ในช่วงที่ผ่านมาเพื่อพัฒนาการคาดการณ์ล่าสุดของเรา นี้แน่นอนแตกต่างจากแบบจำลองการเรียบเรียงชี้แจง Ive รวมการคาดคะเนของคำพูดราคาตลาดเนื่องจากเราจะใช้คำเหล่านี้ในหน้าเว็บถัดไปเพื่อวัดความถูกต้องในการคาดการณ์ ตอนนี้ฉันต้องการนำเสนอผลที่คล้ายคลึงกันสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 2 ช่วง รายการสำหรับเซลล์ C5 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C6 ถึง C11 แจ้งให้ทราบว่าขณะนี้มีเพียงข้อมูลล่าสุดสองชิ้นที่ใช้ล่าสุดในการคาดการณ์เท่านั้น อีกครั้งฉันได้รวมการคาดคะเน quotpost เพื่อวัตถุประสงค์ในการอธิบายและเพื่อใช้ในภายหลังในการตรวจสอบการคาดการณ์ บางสิ่งบางอย่างอื่นที่มีความสำคัญที่จะแจ้งให้ทราบล่วงหน้า สำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ m-period เฉพาะค่าข้อมูลล่าสุดของ m ที่ใช้ในการคาดคะเนเท่านั้น ไม่มีอะไรอื่นที่จำเป็น สำหรับการคาดการณ์ค่าเฉลี่ยของระยะเวลา m-period เมื่อทำนายการคาดการณ์ของ quotpast ให้สังเกตว่าการทำนายครั้งแรกเกิดขึ้นในช่วง m 1 ทั้งสองประเด็นนี้จะมีความสำคัญมากเมื่อเราพัฒนาโค้ดของเรา การพัฒนาฟังก์ชัน Average Moving Average ตอนนี้เราจำเป็นต้องพัฒนาโค้ดสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่สามารถใช้ความยืดหยุ่นได้มากขึ้น รหัสดังต่อไปนี้ โปรดทราบว่าปัจจัยการผลิตเป็นจำนวนงวดที่คุณต้องการใช้ในการคาดการณ์และอาร์เรย์ของค่าทางประวัติศาสตร์ คุณสามารถเก็บไว้ในสมุดงานที่คุณต้องการ Function MovingAverage (Historical, NumberOfPeriods) ในฐานะ Single Declaring และ Initializing ตัวแปร Dim Item As Variant Dim Counter เป็นจำนวนเต็ม Integer Dim Single Dim HistoricalSize As Integer ตัวแปรที่ Initializing ตัวแปร Counter 1 สะสม 0 การกำหนดขนาดของอาร์เรย์ Historical HistoricalSize Historical. Count สำหรับ Counter 1 ถึง NumberOfPeriods สะสมจำนวนที่เหมาะสมของค่าที่สังเกตก่อนหน้านี้ล่าสุด Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage การสะสม NumberOfPeriods รหัสจะอธิบายในคลาส คุณต้องการวางตำแหน่งฟังก์ชันในสเปรดชีตเพื่อให้ผลของการคำนวณปรากฏขึ้นที่ตำแหน่งดังต่อไปนี้

No comments:

Post a Comment